
APPLICATION NOTE AN_P12AB04_1

Xbee module configuration
from a µcontroller

Soulier Baptiste

Polytech Clermont Ferrand

2012-2013

The purpose of this application note is to explain how to configure the main options of a Xbee RF
module with a basic µcontroller.

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 1

Table of Contents

Introduction .. 2

I. The Xbee modules ... 3

I.I. General Overview ... 3

I.II. Main Configuration‟s Options ... 4

I.III. Configuration‟s Stream .. 5

II. Xbee configuration from a µController .. 7

II.I. Connection Xbee µController .. 7

II.II. Designing a Configuration function ... 8

II.III. Peripheral functions needed .. 9

II.IV. Example of a C Configuration function .. 10

Conclusion ... 13

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 2

Introduction

Nowadays, a lot of applications require wireless transmissions. Different technologies exist,

and, according to the needs of the application (data rate, transmit range, transmit power,

sensitivity, consumption…), some are more appropriate than others. You can find, for

example, Wi-Fi, Infrared (IR), Bluetooth…

One of this wireless ways to transfer data is the Xbee modules. Using the Zigbee protocol,

based on the IEEE 802.15.4 Standard for Wireless Personal Area Networks WPANs, these

Xbee modules are low-power digital radios designed by DIGI.

The purpose of this application note is to explain how, from a classic micro controller, to

configure the main options of these Xbee modules in order to create a simple wireless

communication.

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 3

I. The Xbee modules

This part of the application note presents the module, and the general options to configure in

order to established a basic wireless communication.

I.I. General Overview

The Xbee modules sold by DIGI (www.digi.com) are small radios operating within the ISM

2.4 GHz frequency band and meeting IEEE 802.15.4 standards.

Figure 1: Xbee Module (S1 &S1 pro)

Easily integrable with its reduced size, the Xbee modules offer the following properties

(Xbee1 and Xbee1 pro):

 Transmit range: 30m up to 750m

 Transmit power: 1mW and 63mW

 Receiver sensitivity : -92dBm to -100dBm

 Transmit peak current (@3.3V): 45mA and 250mA

 Reception current (@3.3V): 50mA and 55mA

 Power down current: <10µA

 RF data rate 250 kbps

 Retries and Acknowledgements

 Source/Destination Addressing

 Unicast & Broadcast Communications

 Point-to-point, point-to-multipoint and peer-to-peer topologies supported

 Coordinator/End Device operations

You can find more Xbee specifications at www.digi.com .

For low data rate transmissions with a reasonable consumption, the Xbee seems to be a good

compromise. Plus, it is rather simple to understand it way of functioning and to get it

communicating.

http://www.digi.com/
http://www.digi.com/

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 4

I.II. Main Configuration’s Options

There is no particular need to configure the Xbee module to communicate, but, according to

the application developed and the integration environment of the module, you might have to

change some parameters (like the serial data rate for example).

Here are the main parameters you might have to configure on a Xbee module:

 Serial communication parameters:

o Data rate (1.2kbps to 250kbps)

o Number of Stop bits

o Parity

o Data length

 Sleep mode

o Enabled/Disabled

o Cyclic/Pin

o Time before sleep

 RF Power Level

 Get Serial Number (module address)

 Destination address

 Source address

 Channel used

 PAN ID

 MAC mode

 Packetization timeout

 Pull-up resistor options

 Pins configurations

 …

Find the complete datasheet at: http://ftp1.digi.com/support/documentation/90000982_J.pdf

The “classic” way to configure a Xbee module is to use the Digi's X-CTU Software and a

serial connection to a PC. Digi stocks RS-232 and USB boards to facilitate interfacing with a

PC.

X-CTU software: http://ftp1.digi.com/support/driver/40002636_A.zip

Figure 2: Xbee development Kit

http://ftp1.digi.com/support/documentation/90000982_J.pdf
http://ftp1.digi.com/support/driver/40002636_A.zip

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 5

Figure 3: X-CTU, Configuration and Communication software

With the X-CTU software, you‟re able to configure the serial connection (between the module

and the PC) and you‟re able to communicate with the connected module (to configure some of

its parameters for example) and with distant module via the connected module.

I.III. Configuration’s Stream

In order to set up the module, the AT Command Mode is used. The AT Commands allow to

turn the module into it configuration mode and to easily configure each parameter available.

From the X-CTU terminal on a PC or from a µcontroller, the principle of this Command mode

is the same, as described in the example below:

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 6

Figure 4: Example of Configuration‟s Stream

This first example shows the command stream to, in this case, configure the serial baud rate at

9600.

 To enter in the command mode, the characters “+++” must be sent to the module with

a Carriage Return (CR).

 Once these characters have been sent, a guard time (GT, default 1s), while no

characters should be sent, must be respect.

 The module answers to a correct command by sending back the word “OK” with a

Carriage Return.

 In the previous example, the baud rate command is used: “BD” => “ATBD” with the

parameter 03 which refers to the defined value of 9600 bauds (page 33/68 datasheet).

 The configuration is then saved to non-volatile memory using the command “ATWR”

(Write) so that configuration persists through subsequent power-up or reset.

 Finally, to exit the Command Mode, the characters “ATCN” are sent to the module.

The AT commands available must always be prefixed by the characters “AT” and formatted as

defined:

Figure 5: Syntax of AT commands

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 7

The various AT commands available are described in the datasheet:

http://ftp1.digi.com/support/documentation/90000982_J.pdf

NOTE: Failure to enter AT Command Mode is most commonly due to baud rate mismatch.

To avoid this problem, ensure that the „Baud‟ setting on the “PC Settings” tab or on the

µController‟s UART matches with the interface data rate of the RF module. By default, the

BD parameter = 3 (9600 bps).

II. Xbee configuration from a µController

According to the application developed, and particularly when the Xbee modules are to be

embedded into autonomous systems, the module‟s configuration cannot always be proceeded

manually by connecting each module on a development kit and by configuring the parameters

from the X-CTU software.

In that case, one solution is to program the configuration of the module directly into the micro

controller used to transmit the wireless data.

II.I. Connection Xbee µController

Of course, a such micro controller must have a serial interface to be connected to the module.

The minimum PINs required for the serial communication are DIN (Data In) and DOUT

(Data Out). Obviously, the Xbee module needs to be alimented (3.3V) with the PINs VDD

and GND.

Figure 6: Basic connection µController-Xbee

As shown in the Figure 6, the serial communication is asynchronous (no clock‟s signal

shared). This means that the serial interface should be an UART (Universal Asynchronous

Receiver Transmitter).

http://ftp1.digi.com/support/documentation/90000982_J.pdf

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 8

The pin UART_TX of the µcontroller should be connected to the pin DI and the UART_RX

should be connected to the Xbee‟s pin DOUT.

Considering that the Xbee module, now connected to the µcontroller, is supposed to be in it

default state with it start parameters, the configuration program can be written.

II.II. Designing a Configuration function

With the X-CTU software and it graphical interface, the configuration is pretty easy, the

commands are sent in the terminal and the module‟s response are posted and shown in this

same terminal.

But, from a µcontroller, the configuration must be operated blindly considering that we have

no screen to print the data exchanged with the module. This is why one solution consists in

developing a configuration function as a Finite State Machine (FSM).

This FSM should first enter in the command mode, send the various commands successively,

save the configuration to the non-volatile memory and finally, quit the command mode. If any

step can‟t be proceeded (Fail), the FSM goes directly to the final state and quits the command

mode. This first description is very basic, we‟ll see later that, in order to facilitate the debug

of the program, the FSM should in fact be more complete. For example, a failure at one

specific state of the FSM should be reported with the number of the missed state.

Figure 7: Principle of the FSM Configuration Function

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 9

With this principle, the configuration is realized at the function‟s call and is completely

autonomous. The user just has to schedule once the configuration, prepare the command lines

to send, choose the right parameters and the order of the commands.

II.III. Peripheral functions needed

To use a such configuration function, we have to be able to communicate properly with the

Xbee module. That means we need peripherals functions:

 Configure and Initialize the UART

o Initial Serial baud rate : 9600

o Data length : 8 bits

o Bit Stop : 1 bit

o Parity : None

o UART FIFO : enabled and reset

o Enable UART transmit and reception

o Pin Configuration

 Port used

 Pins used

 Pin‟s Function : UART (Tx & Rx)

 Pull-up resistor…

 Send a buffer (command) to the Xbee

o UART‟s port used

o Pointer on the buffer to send

o Size of the buffer

o Transmit mode

 Receive a buffer (response) from the Xbee

o UART‟s port used

o Pointer on the reception buffer

o Size expected

o Reception mode (blocking/ none blocking)

 Wait a defined time (to avoid guard time violations)

o Use a Timer which generates an Interruption each 1ms (for example) and

increments a counter variable (SysTickCnt++)

o Create a delay function

 Void delay (int tempo) //wait „tempo‟ ms

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 10

II.IV. Example of a C Configuration function

This part presents an example of configuration function developed and used in a specific

application which requires to change the serial data baud to 250kbps and to enable the sleep

mode on Pin request.

 First, the UART is initialized with 9600 bps, 8bits data length, 1 bit stop, no parity.

 Then the configuration function (Xbee_config) is called.

 Finally, the return code of the function is analyzed to determine if the process

succeeded or failed.

o If the process succeeded, the UART configuration is changed (baud rate

250kbps) to keep the same serial configuration as the Xbee module (now at

250kbps).

o If the process failed, an error code is generated and signaled to the user.

At this moment, and if the configuration succeeded, the module is configured and can be used

to communicate with another wireless system.

The configuration FSM used in this application is pretty simple:

Figure 8: Configuration FSM used in the example application

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 11

The C source of this configuration function is the following one:

/***//**

* @brief Xbee module configuration

* @param[in] none

* @return int : (1:succes) (0:fail)

* @author : BAPTISTE SOULIER

**/

int config_Xbee(void)

{

int etape_config=0;

while(1)

{

 switch(etape_config)

 {

 case 0 : //Initial step : Entering commande mode

 Delay(1500);

 UART_Send(TEST_UART, commande_0N, sizeof(commande_0N), BLOCKING);

 Delay(1500); //Ensure no Guard Time Violation

 UART_Receive(TEST_UART, commande_RESP, 3, NONE_BLOCKING);

 if (commande_RESP[0]==commande_OK[0] && commande_RESP[1]==commande_OK[1] && commande_RESP[2]==commande_OK[2])

 {

 etape_config = 1;

 }

 else

 {

 etape_config = 6;

 }

 break;

 case 1 : //Serial Baud Rate Configuration

 UART_Send(TEST_UART, commande_BD, sizeof(commande_BD), BLOCKING);

 UART_Receive(TEST_UART, commande_RESP, 3, BLOCKING);

 if (commande_RESP[0]==commande_OK[0] && commande_RESP[1]==commande_OK[1] && commande_RESP[2]==commande_OK[2])

 {

 etape_config = 2;

 }

 else

 {

 etape_config = 6;

 }

 break;

 case 2 : //Sleep Mode Configuration

 UART_Send(TEST_UART, commande_SM, sizeof(commande_SM), BLOCKING);

 UART_Receive(TEST_UART, commande_RESP, 3, BLOCKING);

 if (commande_RESP[0]==commande_OK[0] && commande_RESP[1]==commande_OK[1] && commande_RESP[2]==commande_OK[2])

 {

 etape_config = 3;

 }

 else

 {

 etape_config = 6;

 }

 break;

 case 3 : //Saving full configuration

 UART_Send(TEST_UART, commande_WR, sizeof(commande_WR), BLOCKING);

 UART_Receive(TEST_UART, commande_RESP, 3, BLOCKING);

 if (commande_RESP[0]==commande_OK[0] && commande_RESP[1]==commande_OK[1] && commande_RESP[2]==commande_OK[2])

 {

 etape_config = 4;

 }

 else

 {

 etape_config = 6;

 }

 break;

 case 4 : //exit commande mode

 UART_Send(TEST_UART, commande_CN, sizeof(commande_CN), BLOCKING);

 UART_Receive(TEST_UART, commande_RESP, 3, BLOCKING);

 if (commande_RESP[0]==commande_OK[0] && commande_RESP[1]==commande_OK[1] && commande_RESP[2]==commande_OK[2])

 {

 etape_config = 5;

 }

 else

 {

 etape_config = 6;

 }

 break;

 case 5 : return 1; // Full configuration completed => return success

 case 6 : return 0; //configuration failed => return fail

 default : return 0;

 }

 }

}

Figure 9: C source code of the example function

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 12

The prototypes of the sub functions used are:

int config_Xbee (void);

void Delay (unsigned long tick);

uint32_t UART_Send(UART_TypeDef *UARTx, uint8_t *txbuf,uint32_t buflen,TRANSFER_BLOCK_Type flag);

uint32_t UART_Receive(UART_TypeDef *UARTx, uint8_t *rxbuf,uint32_t buflen,TRANSFER_BLOCK_Type

 flag);

Figure 10: Function‟s prototypes

The data used in this function are:

//uint8_t = unsigned char

uint8_t commande_0N[]={'+','+','+'}; //openning commande mode

uint8_t commande_BD[]={'A','T','B','D','3','D','0','9','0','\r'}; //250kbps serial interface

uint8_t commande_SM[]={'A','T','S','M','1','\r'}; //Sleep Mode (0:disable) (1:pin controled)

uint8_t commande_WR[]={'A','T','W','R','\r'}; //write configuration (saving)

uint8_t commande_CN[]={'A','T','C','N','\r'}; // exit commande mode

uint8_t commande_OK[]={'O','K','\r'}; // /!\ Input : module response if commande well understood

uint8_t commande_RESP[3]; // buffer used to record the answer sent by the module to our commandes and used to

compare with commande_OK

Figure 11: Data declarations

The function fills its role.

This example illustrates a simple way to program the Xbee module configuration from a

µcontroller.

Soulier Baptiste AN_P12AB04_1 Xbee Configuration 13

Conclusion

Using a Xbee module in an embedded application is a pretty simple way to manage a wireless

communication.

The most important step in the development of a such application is the configuration: the

µcontroller configuration, but also the Xbee module configuration.

To configure a Xbee module for an integrated utilization, it‟s hardly possible to use the

development tools like the development kit and the X-CTU software. Then, it‟s not a big

problem, now you‟ve seen, in this application note, how to manage an Xbee configuration

from a µcontroller.

Keep in mind that the configuration‟s way proposed in this document is only a solution among

others and that the best solution will still be the one that you understand best. The solution

proposed here is also very basic and according to your needs deserves to be improved.

Contact: baptiste.soulier@gmail.com

Sources: www.digi.com

Complete datasheet: http://ftp1.digi.com/support/documentation/90000982_J.pdf

mailto:baptiste.soulier@gmail.com
http://www.digi.com/
http://ftp1.digi.com/support/documentation/90000982_J.pdf

